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Abstract 6 
Mixing of saline and fresh water is a process of energy dissipation. The fresh water flow that enters 7 
an estuary from the river contains potential energy with respect to the saline ocean water. This 8 
potential energy is able to perform work. Looking from the ocean to the river, there is a gradual 9 
transition from saline to fresh water and an associated rise of the water level in accordance with the 10 
increase of potential energy. Alluvial estuaries are systems that are free to adjust dissipation 11 
processes to the energy sources that drive them, primarily the kinetic energy of the tide and the 12 
potential energy of the river flow, and to a minor extent the energy in wind and waves. Mixing is 13 
the process that dissipates the potential energy of the fresh water. The Maximum Power (MP) 14 
concept assumes that this dissipation takes place at maximum power, whereby the different mixing 15 
mechanisms of the estuary jointly perform the work. In this paper, the power is maximized with 16 
respect to the dispersion coefficient that reflects the combined mixing processes. The resulting 17 
equation is an additional differential equation that can be solved in combination with the advection-18 
dispersion equation, requiring only two boundary conditions for the salinity and the dispersion. The 19 
new equation has been confronted with 52 salinity distributions observed in 23 estuaries in different 20 
parts of the world and performed very well, even better than the well-tested empirical Van der 21 
Burgh equation that required a calibration parameter, which with this equation is no longer needed. 22 
 23 
 24 
 25 
1. Introduction 26 
Mixing of fresh and saline water in estuaries is governed by the dispersion-advection equation, 27 
which results from the combination of the salt balance and the water balance under partial to well-28 
mixed conditions (see e.g. Savenije, 2005). The partially to well-mixed condition applies when the 29 
increase of the salinity over the depth is gradual. The salinity equation reads: 30 
 31 
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Here, S [psu] is the salinity of the water, Q [L3T-1] is the water flow in the estuary, A [L2] is the 33 
cross-sectional area of the flow (not necessarily equal to the storage cross-section AS), and D [L2T-1] 34 
is the dispersion coefficient. The first term reflects the change of the salinity over time as a result of 35 
the balance between the advection by the water flow (second term) and the mixing of water with 36 
different salinity by dispersive exchange flows (third term). If there is no other source of salinity, 37 
then the sum of these terms is zero. If we average this equation over a tidal period, then the first 38 
term reflects the long term change of the salinity as a result of the balance between the advection of 39 
fresh water from the river, and the tidal average exchange flows. In a steady state, where the first 40 
term is zero, the equation can be simply integrated with respect to x, yielding: 41 
 42 

Q S − S f( )− AD ∂S
∂x

=0     (2) 43 

with the condition that at the upstream boundary ∂S /∂x =0 and S=Sf, the salinity of the fresh river 44 
water. In the steady state situation the discharge Q then equals the fresh water discharge coming 45 
from upstream, which has a negative value moving seaward; similarly the salinity gradient is 46 
negative with the salinity decreasing in upstream direction. Assuming that in a given estuary the 47 
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geometry A(x) is known, as well as the observed salinity and discharge of the fresh river water, then 48 
this differential equation has two unknowns D(x) and S(x). 49 
 50 
In the steady state salt balance equation the flushing out of salt by the fresh river discharge is 51 
balanced by the exchange of saline and fresh water resulting from a combination of mixing 52 
processes that cause an upriver flux of salt. The sketch in Figure 1 presents the system description 53 
with a typical longitudinal salinity distribution (in red). It also shows the associated water level (in 54 
blue), which has an upstream gradient due to the decreasing salinity. Because of the density 55 
difference, the hydrostatic pressures on both sides (in yellow) are not equal. The water level at the 56 
toe of the salt intrusion curve is Δh higher, resulting in a seaward pressure difference near the 57 
surface and an inland pressure difference near the bottom. Although the hydrostatic forces (the 58 
integrals of the hydrostatic pressure distributions) are equal and opposed in steady state, they have 59 
different working lines, a distance Δh/3 apart. This triggers an angular momentum, which drives the 60 
gravitational circulation. 61 
 62 

 63 
Figure 1. System description of the salt and fresh water mixing in an estuary, with the seaside on the left and the river side on 64 
the right. The water level (blue line) has a slope as a result of the salinity distribution (red line). In yellow are the hydrostatic 65 
pressure distributions on both sides. The black arrows show the boundary fluxes. 66 

 67 
The dispersion coefficient is generally determined by calibration on observations, or predicted by 68 
(semi-)empirical methods. Providing a theoretical basis for the dispersion coefficient is not trivial. 69 
A fundamental question is what this dispersion actually is. Is it a physical parameter, or merely a 70 
parameter that follows from averaging the complex turbulent flow patterns in a natural watercourse. 71 
MacCready (2004), for instance, was able to derive an analytical expression for the dispersion as a 72 
function of the salinity gradient and geometric, hydraulic and turbulence parameters. But also this 73 
derivation required simplifying assumptions. 74 
 75 
The complication is that there are many different mixing processes at work. One can distinguish: 76 
tidal shear, tidal pumping, tidal trapping, gravitation circulation (e.g. Fischer et al., 1979) and 77 
residual circulation due to the interaction between ebb and flood channels (Nguyen and Savenije, 78 
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2008; Zhang and Savenije, 2017). And these different processes can be split up in many 79 
subcomponents. Park and James (1990), for instance, distinguished 66 components, grouped into 11 80 
terms. This reductionist approach, unfortunately, did not lead to more insight. 81 
 82 
2. Applying thermodynamics to salt and fresh water mixing 83 
Here we take a system's approach, where the assumption is that the different mechanisms are not 84 
independent but are jointly at work to reduce the salinity gradient that drives the exchange flows. 85 
We use the concept of Maximum Power, as described by Kleidon (2016). Kleidon defines Earth 86 
system processes as dissipative systems that do conserve mass and energy, but export entropy. 87 
These systems tend to function at maximum power, whereby the power of the system can be 88 
defined as the product of a process flux and the gradient driving the flux. The ability to maintain 89 
this power (i.e., work through time) in steady state results from the exchange fluxes at the system 90 
boundary, and when work is performed at the maximum possible rate within the system 91 
(“Maximum Power”), this state reflects the conditions at the system boundary. The key parameter 92 
describing the process can then be found by maximizing the power. 93 
 94 
From an energy perspective, we see that the fresh water flux, which has a lower density than saline 95 
water and, without a counteracting process, would float on top of the saline water, adds potential 96 
energy to the system, while the tide, which flows in and out of the estuary at a regular pace, creates 97 
turbulence, mixes the fresh and saline water and hence works at reducing this potential energy. This 98 
is why dispersion predictors are generally linked to the Estuarine Richardson number, which 99 
represents the ratio of the potential energy of the fresh water entering the estuary to the kinetic 100 
energy of the tidal flow. 101 
 102 
In thermodynamic terms, the fresh water flux maintains a potential energy gradient, which triggers 103 
mixing processes that work at depleting this gradient. Because the strength of the mixing of fresh 104 
and saline water in turn depends on this gradient, there is an optimum where the mixing process 105 
performs at maximum power. From a system point of view, it is not really relevant which particular 106 
mixing process is dominant, or how these different processes jointly reduce the salinity gradient. 107 
What is relevant is how the optimum flux associated with this mixing process, yielding maximum 108 
power, depends on the dispersion. 109 
 110 
In our case, the power derived from the potential energy of the fresh water flux is described by the 111 
product of the upstream dispersive water flux and the gradient in geopotential height driving this 112 
flux, or alternatively, the product of the dispersive exchange flux and the water level gradient. 113 
 114 
The water level gradient follows from the balance between the hydrostatic pressures of fresh and 115 
saline water (see e.g. Savenije, 2005), resulting in:  116 
∂z
∂x

= − h
2ρ

∂ρ
∂x

    (3) 117 

where z [L] is the tidal average water level, h [L] is the tidal average water depth and ρ[ML-3]is the 118 
density of the saline water. Note that this equation applies to the case where the river flow velocity 119 
is small, which is the case when estuaries are well mixed. Otherwise a backwater effect should be 120 
included, but this only applies to a situation of high river discharge when the salt intrudes by means 121 
of a salt wedge with a sharp interface. 122 
 123 
One can express the density of saline water as a function of the salinity S [psu]: ρ = 1000 +α1S124 
(kg/m3) where α1  is a constant with a value of about 25/35, because seawater with a salinity of 35 125 
psu has a density of about 1025 kg/m3. As a result, eq.(3) can be written as: 126 
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∂z
∂x

= −α1
h
2ρ

S '    (4) 127 

The upstream dispersive flux is implicit in the salt balance equation, which in steady state can be 128 
written as: 129 
 130 
Q S − Sf( ) = ADS '   (5) 131 
where S' [L-1] is the salinity gradient, which is negative in upstream direction. So the left hand term 132 
is the salt flux due to the fresh water of the river that pushes back the salt, whereas the right hand 133 
term is the dispersive intrusion of salt due to the exchange flux of the combined mixing processes  134 
(see Figure 1). Writing both sides as water fluxes results in: 135 

Q = ADS '
S − Sf( )     (6) 136 

The right hand side is the water exchange flux, which is the flux that depletes the gradient. As (6) 137 
shows, in steady state this exchange flux is equal to the fresh water discharge. Combination of the 138 
flux and the gradient leads to the power of the mixing system per unit length (defined as a positive 139 
quantity): 140 

P = −ρgQ ∂z
∂x

=α1Q
gh
2
S '   (7) 141 

To apply the theory of maximum power to the dispersive process, we need to maximize the power 142 
with regard to the dispersion coefficient, which is the parameter representing the mixing and which 143 
is the main unknown in salt intrusion prediction: 144 
∂P
∂D

= 0    (8) 145 

Applying (8) with constant river discharge Q and constant depth h -- the property of an ideal 146 
alluvial estuary, according to Savenije (2005) -- leads to: 147 
∂S '
∂D

= 0    (9) 148 

Using the salt balance equation, where S ' =Q S − Sf( ) / AD( ) , differentiation leads to: 149 
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S '
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−
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= 0   (10) 150 

 151 
The solution S'=0 is trivial. For non-zero salinity gradient, the solution is: 152 

DS '
(S − Sf )D '

= A 'D
AD '

+1
 
 (11) 153 

 154 
We introduce three length scales: a = −(A − Af ) / A ' , s = −(S − Sf ) / S '  and d = −D /D ' , where a is 155 
the convergence length of an exponentially varying estuary cross-section which tends towards the 156 
cross-section of the river Af, s is length scale of the longitudinal salinity variation, and d is length 157 
scale of the longitudinal variation of dispersion. In macro-tidal estuaries, the part of the estuary 158 
where the salt intrusion occurs has a much larger cross-section than the upstream river, such that 159 
Af<<A and a≈A/A'. In riverine estuaries, where this is not the case, a factor ε=(1-Af /A) should be 160 
included. All length scales have the dimension of [L]. In an exponentially shaped estuary, the 161 
convergence length is a constant, but d and s vary with x. It can be shown that the proportion s/d 162 
equals the Van der Burgh coefficientK = AD '/Q , which in this approach varies as a function of x, 163 
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although generally assumed constant (e.g. Savenije, 2005; and Zhang and Savenije, 2017). Using 164 
these length scales, eq. (11) can be written as: 165 
s
d
= a
a + dε

  (12) 166 

or: 167 

s = ad
a + dε

  (12a) 168 

or: 169 
 170 

d = as
a − sε

 (12b) 171 

 172 
where in estuaries with a pronounced funnel shape ε≈1. Eq.(12) is an additional equation to the salt 173 
balance, which in terms of the length scales reads: s = −AD /Q . As a result, we have two 174 
differential equations with two unknowns: S(x) and D(x). Adding two boundary conditions at a 175 
given point x=0: S0 and D0 would solve the system. The first boundary condition is simply sea 176 
salinity if the boundary is chosen at the estuary mouth. Then the only unknown parameter left is the 177 
value for the dispersion at the ocean boundary. For this boundary value empirical predictive 178 
equations have been developed which relate the D0 to the Estuarine Richardson number (e.g. by 179 
Gisen et al., 2015), which goes beyond this paper. If observations of salinity distributions are 180 
available, then the value of D0 is obtained by calibration. 181 
 182 
What the maximum power equation has contributed is that it provides an additional equation. In the 183 
past, a solution could only be found if an empirical equation was added describing D(x), containing 184 
an additional calibration parameter. In the approach by Savenije (2005) this was the empirical Van 185 
der Burgh equation containing the constant Van der Burgh coefficient K. However, with the new 186 
equation (12), which in fact represents a spatially varying Van der Burgh coefficient, this additional 187 
calibration parameter is no longer required. So this new approach replaces and empirical equation 188 
for a physically based equation and reduces the number of calibration parameters to one: the 189 
dispersion at a well-chosen boundary condition. 190 
 191 
3. Application 192 
The two equations (2) and (12) together can be solved numerically by a simple linear integration 193 
scheme. As boundary condition it requires values for S(x1) and D(x1) at a well-chosen location x=x1. 194 
In alluvial estuaries the cross-sectional area A(x) generally varies according to an exponential 195 
function which often has an inflection point (see for example Figure 2 describing the Maputo 196 
Estuary in Mozambique). The boundary condition is best taken at this inflection point if the estuary 197 
has one. If the estuary has no inflection point, as is the case in the Limpopo estuary (see Figure 3), 198 
then the boundary condition is taken at the estuary mouth. 199 
 200 
The downstream part of estuaries with an inflection point has a much shorter convergence length, 201 
giving the estuary a typical trumped shape. This wider part is generally not longer than about 10 202 
km, which is the distance over which ocean waves dissipate their energy. Beyond the inflection 203 
point, the shape is determined by the combination of kinetic energy of the tide and the potential 204 
energy of the river flow. If the tidal energy is dominant over the potential energy of the river, then 205 
the convergence is short, leading to a pronounced funnel shape; if the potential energy of the river is 206 
large due to regular and substantial flood flows, then the convergence is large, typical for deltas. 207 
Hence, the topography can be described by two branches: 208 

Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-87
Manuscript under review for journal Earth Syst. Dynam.
Discussion started: 17 October 2017
c© Author(s) 2017. CC BY 4.0 License.



 6 

A = Af + (A0 − Af )exp −x / a0( )if 0 < x < x1
A = Af + (A1 − Af )exp −(x − x1) / a1( )if x ≥ x1

   (13) 209 

where A0 and A1 are the cross-sectional areas at x=0 and x=x1, respectively, and a0 and a1 are the 210 
convergence lengths of the lower and upper segments. In some cases, where ocean waves don't 211 
penetrate the estuary, there is no inflection point and x1=0. The Maputo (see Figure 2) has two 212 
segments, whereas the Limpopo Estuary (see Figure 3), an estuary in Mozambique 200 km north of 213 
the Maputo semi-closed by a sand bar, has a single branch. It can also be seen that in the Limpopo 214 
the size of the river cross-section is not negligible and that ε<1 showing a slight curve in the 215 
exponential functions. 216 
 217 
Subsequently we have integrated the equations (2) and (12) conjunctively by a simple explicit 218 
numerical scheme in a spreadsheet and confronted the solution with observations. The solutions are 219 
fitted to the data by selecting values for S and D at the boundary condition x=x1 (or at x=0 for the 220 
Limpopo). Figures 4 and 5 show applications of the solution to selected observations in the Maputo 221 
and Limpopo estuaries. In the supplementary material more applications are shown, also for other 222 
estuaries in different parts of the world. 223 
 224 
  225 
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 226 

 227 
Figure 2, Geometry of the Maputo Estuary, showing the cross-sectional area A (blue diamonds), the width B (red dots) and 228 
the depth h (green triangles) on a logarithmic scale, as a function of the distance from the mouth. The inflection point at 229 
x1=5000 m separates the lower segment with a convergence length of a0=2300 m from the upper segment with a1=16000m. 230 

 231 
Figure 3. Geometry of the Limpopo Estuary, showing the cross-sectional area A (blue diamonds), the width B (red dots) and 232 
the depth h (green triangles) on a logarithmic scale, as a function of the distance from the mouth. There is no inflection point, 233 
but the estuary converges exponentially towards the river cross-section Af= 800 m2, with a convergence length of 20 km.  234 
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 235 

 236 
Figure 4. Application of the numerical solution to observations in the Maputo Estuary for high water slack (HWS) and low 237 
water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS 238 
and the blue dots the observations at LWS on 29 May 1984. 239 

 240 
Figure 5. Application of the numerical solution to observations in the Limpopo Estuary for high water slack (HWS) and low 241 
water slack (LWS). The green line shows the tidal average (TA) condition. The red diamonds reflect the observations at HWS 242 
and the blue dots the observations at LWS on 10 August 1994. 243 
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4. Discussion and conclusion 246 
Making use of the Maximum Power (MP) concept, it was possible to derive an additional equation 247 
to describe the mixing of salt and fresh water in estuaries. Together with the salt balance equation 248 
these two first order and linear differential equations only require two boundary conditions (the 249 
salinity and the dispersion at some well-chosen boundary) to be solved. If the estuary has an 250 
inflection point in the geometry, then the preferred boundary condition lies there, otherwise the 251 
boundary condition is chosen at the ocean boundary.  252 
 This new equation can replace previous empirical equations, such as the Van der Burgh 253 
equation, and does not require any calibration coefficients (besides the boundary conditions). The 254 
new equation appears to fit very well to observations, which adds credibility to the correctness of 255 
applying the MP concept to fresh and salt water mixing. 256 
 The method presented here is based on a system's perspective, which is holistic rather than 257 
reductionist. Reductionist theoretical methods have tried to break down the total dispersion in a 258 
myriad of smaller mixing processes, some of which are difficult to identify or to connect to 259 
conditions that make them more or less prominent. The idea here is that in a freely adjustable 260 
system, such as an alluvial estuary, individual mixing processes are not independent of each other, 261 
but rather influence each other and jointly work at reducing the salinity gradient at maximum 262 
dissipation. The resulting level of maximum power and dissipation is set by the boundary 263 
conditions of the system. It then is less important which mechanism is dominant, as long as the 264 
combined performance is correct. The maximum power limit is a way to derive this joint 265 
performance of mixing processes. The fact that the relationship derived from maximum power 266 
works so well in a wide range of estuaries, is an indication that natural systems evolve towards 267 
maximum power, much like a machine that approaches the maximum performance of the Carnot 268 
limit. 269 
 270 
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